113 research outputs found

    Banach-Mazur Distance from p3\ell_p^3 to 3\ell_\infty^3

    Full text link
    The maximum of the Banach-Mazur distance dBMM(X,n)d_{BM}^M(X,\ell_\infty^n), where XX ranges over the set of all nn-dimensional real Banach spaces, is difficult to compute. In fact, it is already not easy to get the maximum of dBMM(pn,n)d_{BM}^M(\ell_p^n,\ell_\infty^n) for all p[1,]p\in [1,\infty]. We prove that dBMM(p3,3)9/5, p[1,]d_{BM}^M(\ell_p^3,\ell_\infty^3)\leq 9/5,~\forall p\in[1,\infty]. As an application, the following result related to Borsuk's partition problem in Banach spaces is obtained: any subset AA of p3\ell_p^3 having diameter 11 is the union of 88 subsets of AA whose diameters are at most 0.90.9

    Design and analysis of an efficient energy algorithm in wireless social sensor networks

    Get PDF
    Because mobile ad hoc networks have characteristics such as lack of center nodes, multi-hop routing and changeable topology, the existing checkpoint technologies for normal mobile networks cannot be applied well to mobile ad hoc networks. Considering the multi-frequency hierarchy structure of ad hoc networks, this paper proposes a hybrid checkpointing strategy which combines the techniques of synchronous checkpointing with asynchronous checkpointing, namely the checkpoints of mobile terminals in the same cluster remain synchronous, and the checkpoints in different clusters remain asynchronous. This strategy could not only avoid cascading rollback among the processes in the same cluster, but also avoid too many message transmissions among the processes in different clusters. What is more, it can reduce the communication delay. In order to assure the consistency of the global states, this paper discusses the correctness criteria of hybrid checkpointing, which includes the criteria of checkpoint taking, rollback recovery and indelibility. Based on the designed Intra-Cluster Checkpoint Dependence Graph and Inter-Cluster Checkpoint Dependence Graph, the elimination rules for different kinds of checkpoints are discussed, and the algorithms for the same cluster checkpoints, different cluster checkpoints, and rollback recovery are also given. Experimental results demonstrate the proposed hybrid checkpointing strategy is a preferable trade-off method, which not only synthetically takes all kinds of resource constraints of Ad hoc networks into account, but also outperforms the existing schemes in terms of the dependence to cluster heads, the recovery time compared to the pure synchronous, and the pure asynchronous checkpoint advantage. © 2017 by the authors. Licensee MDPI, Basel, Switzerland

    Respuesta de la actividad enzimática digestiva al incremento gradual de la salinidad en el cangrejo de Shanghai maduro, Eriocheir sinensis (Decapoda: Brachyura)

    Get PDF
    Mature Chinese mitten crabs, Eriocheir sinensis, were exposed to brackish water or seawater as an obligatory part of their reproductive migration. Physiological and biochemical reorganization were needed to adapt them to this migration. To understand the digestive adjustments of Eriocheir sinensis at biochemical level during this transformation from freshwater to seawater, the response of the activity of five digestive enzymes (amylase, cellulase, pepsin, trypsin and lipase) in the hepatopancreas to salinities increasing gradually from 0 (freshwater) to 35 (seawater) was analysed in mature females and males. Digestive enzymes exhibited significantly higher activities in the hepatopancreas of males than those of females, except lipase. In females, amylase, pepsin and trypsin activities began to decrease significantly as the salinity reached 28, and cellulase activity decreased at 35; in males, a considerable decrease in the activity of digestive enzymes, except lipase, was observed at 21 and higher salinities, while an increase was observed at 14. Reduced enzyme activities at elevated salinities suggest that the digestive capacity of crabs for diets becomes weak, and all these digestive enzymes participated in digestive adjustments during osmoregulation. The initial salinity which induced the decrease of enzyme activity was lower in males than in females, indicating that females were more tolerant to elevated salinities than males from the point of digestive biochemical modulation.Se expusieron cangrejos de Shanghai maduros (Eriocheir sinensis) a agua salobre o agua marina obligatoriamente durante la migración reproductora. A fin de que los ejemplares se adaptaran a esta migración, fue preciso proceder a una reorganización fisiológica y bioquímica. Con objeto de estudiar los ajustes digestivos de carácter bioquímico del Eriocheir sinensisdurante la transformación del agua dulce en agua marina, se analizó la reacción de la actividad en el hepatopáncreas de cinco enzimas digestivas (amilasa, celulasa, pepsina, tripsina y lipasa) a un aumento gradual de la salinidad, desde 0 ppt (agua dulce) hasta 35 ppt (agua marina), en ejemplares maduros machos y hembras. Las enzimas digestivas mostraron un grado de actividad notablemente mayor en el hepatopáncreas de los machos que en el de las hembras, con excepción de la lipasa. En las hembras, la actividad de la amilasa, la pepsina y la tripsina comenzó a reducirse notablemente cuando la salinidad alcanzó las 28 ppt, mientras que la actividad de la celulasa descendió cuando se alcanzaron las 35 ppt; en el caso de los machos, se observó un descenso muy pronunciado de la actividad enzimática digestiva a partir de las 21 ppt, aunque la actividad aumentó a las 14 ppt. La menor actividad enzimática indicaría que la capacidad digestiva de los cangrejos se reduce a niveles elevados de salinidad y que todas estas enzimas digestivas participan en los ajustes digestivos que se producen durante la osmorregulación. El nivel de salinidad inicial que indujo el descenso de la actividad enzimática fue inferior en los machos que en las hembras, lo cual indica que estas últimas mostraron una mayor tolerancia a un nivel elevado de salinidad que los machos desde el punto de vista de la modulación bioquímica del proceso digestivo

    Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic

    Get PDF
    Zoledronate (Zol) is a third-generation bisphosphonate that is widely used as an anti-resorptive agent for the treatment of cancer bone metastasis. While there is preclinical data indicating that bisphosphonates such as Zol have direct cytotoxic effects on cancer cells, such effect has not been firmly established in the clinical setting. This is likely due to the rapid absorption of bisphosphonates by the skeleton after intravenous (i.v.) administration. Herein, we report the reformulation of Zol using nanotechnology and evaluation of this novel nanoscale metal-organic frameworks (nMOFs) formulation of Zol as an anticancer agent. The nMOF formulation is comprised of a calcium zoledronate (CaZol) core and a polyethylene glycol (PEG) surface. To preferentially deliver CaZol nMOFs to tumors as well as facilitate cellular uptake of Zol, we incorporated folate (Fol)-targeted ligands on the nMOFs. The folate receptor (FR) is known to be overexpressed in several tumor types, including head-and-neck, prostate, and non-small cell lung cancers. We demonstrated that these targeted CaZol nMOFs possess excellent chemical and colloidal stability in physiological conditions. The release of encapsulated Zol from the nMOFs occurs in the mid-endosomes during nMOF endocytosis. In vitro toxicity studies demonstrated that Fol-targeted CaZol nMOFs are more efficient than small molecule Zol in inhibiting cell proliferation and inducing apoptosis in FR-overexpressing H460 non-small cell lung and PC3 prostate cancer cells. Our findings were further validated in vivo using mouse xenograft models of H460 and PC3. We demonstrated that Fol-targeted CaZol nMOFs are effective anticancer agents and increase the direct antitumor activity of Zol by 80-85% in vivo through inhibition of tumor neovasculature, and inhibiting cell proliferation and inducing apoptosis

    Overexpression of PDK2 and PDK3 reflects poor prognosis in acute myeloid leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a hematological malignancy characterized by the proliferation of immature myeloid cells, with impaired differentiation and maturation. Pyruvate dehydrogenase kinase (PDK) is a pyruvate dehydrogenase complex (PDC) phosphatase inhibitor that enhances cell glycolysis and facilitates tumor cell proliferation. Inhibition of its activity can induce apoptosis of tumor cells. Currently, little is known about the role of PDKs in AML. Therefore, we screened The Cancer Genome Atlas (TCGA) database for de novo AML patients with complete clinical information and PDK family expression data, and 84 patients were included for the study. These patients did not undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). Univariate analysis showed that high expression of PDK2 was associated with shorter EFS (P = 0.047), and high expression of PDK3 was associated with shorter OS (P = 0.026). In multivariate analysis, high expression of PDK3 was an independent risk factor for EFS and OS (P 0.05). Our results indicated that high expressions of PDK2 and PDK3, especially the latter, were poor prognostic factors of AML, and the effect could be overcome by allo-HSCT

    Hybrid topological photonic crystals

    Full text link
    Photonic topological phases offering unprecedented manipulation of electromagnetic waves have attracted much research interest which, however, have been mostly restricted to a single band gap. Here, we report on the experimental discovery of hybrid topological photonic crystals which host simultaneously quantum anomalous Hall and valley Hall phases in different photonic band gaps. The underlying hybrid topological phase manifests itself in the edge responses as the coexistence of the chiral edge states and valley Hall edge states in different frequency ranges. We experimentally verify such an emergent phenomenon and show that such a feature enables novel multiplexing of photon transport in the edge channels. Our study reveals a situation with coexisting topology of distinct nature in a single photonic system that may enable frequency-dependent filtering and manipulation of topological edge photons

    Prognostic Value of MicroRNA-20b in Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a highly heterogeneous disease that requires fine-grained risk stratification for the best prognosis of patients. As a class of small non-coding RNAs with important biological functions, microRNAs play a crucial role in the pathogenesis of AML. To assess the prognostic impact of miR-20b on AML in the presence of other clinical and molecular factors, we screened 90 AML patients receiving chemotherapy only and 74 also undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) from the Cancer Genome Atlas (TCGA) database. In the chemotherapy-only group, high miR-20b expression subgroup had shorter event-free survival (EFS) and overall survival (OS, both P < 0.001); whereas, there were no significant differences in EFS and OS between high and low expression subgroups in the allo-HSCT group. Then we divided all patients into high and low expression groups based on median miR-20b expression level. In the high expression group, patients treated with allo-HSCT had longer EFS and OS than those with chemotherapy alone (both P < 0.01); however, there were no significant differences in EFS and OS between different treatment subgroups in the low expression group. Further analysis showed that miR-20b was negatively correlated with genes in "ribosome," "myeloid leukocyte mediated immunity," and "DNA replication" signaling pathways. ORAI2, the gene with the strongest correlation with miR-20b, also had significant prognostic value in patients undergoing chemotherapy but not in the allo-HSCT group. In conclusion, our findings suggest that high miR-20b expression is a poor prognostic indicator for AML, but allo-HSCT may override its prognostic impact

    Prognostic value of the FUT family in acute myeloid leukemia

    Get PDF
    Genetic abnormalities are more frequently viewed as prognostic markers in acute myeloid leukemia (AML) in recent years. Fucosylation, catalyzed by fucosyltransferases (FUTs), is a post-translational modification that widely exists in cancer cells. However, the expression and clinical implication of the FUT family (FUT1-11) in AML has not been investigated. From the Cancer Genome Atlas database, a total of 155 AML patients with complete clinical characteristics and FUT1-11 expression data were included in our study. In patients who received chemotherapy alone showed that high expression levels of FUT3, FUT6, and FUT7 had adverse effects on event-free survival (EFS) and overall survival (OS) (all P <0.05), whereas high FUT4 expression had favorable effects on EFS and OS (all P <0.01). However, in the allogeneic hematopoietic stem cell transplantation (allo-HSCT) group, we only found a significant difference in EFS between the high and low FUT3 expression subgroups (P = 0.047), while other FUT members had no effect on survival. Multivariate analysis confirmed that high FUT4 expression was an independent favorable prognostic factor for both EFS (HR = 0.423, P = 0.001) and OS (HR = 0.398, P <0.001), whereas high FUT6 expression was an independent risk factor for both EFS (HR = 1.871, P = 0.017) and OS (HR = 1.729, P = 0.028) in patients who received chemotherapy alone. Moreover, we found that patients with low FUT4 and high FUT6 expressions had the shortest EFS and OS (P <0.05). Our study suggests that high expressions of FUT3/6/7 predict poor prognosis, high FUT4 expression indicates good prognosis in AML; FUT6 and FUT4 have the best prognosticating profile among them, but their effects could be neutralized by allo-HSCT

    Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy

    Get PDF
    Immunotherapy holds tremendous promise for improving cancer treatment1. Administering radiotherapy with immunotherapy has been shown to improve immune responses and can elicit an “abscopal effect”2. Unfortunately, response rates for this strategy remain low3. Herein, we report an improved cancer immunotherapy approach that utilizes antigen-capturing nanoparticles (AC-NPs). We engineered several AC-NPs formulations and demonstrated that the set of protein antigens captured by each AC-NP formulation is dependent upon NP surface properties. We showed that AC-NPs deliver tumor specific proteins to antigen-presenting cells and significantly improve the efficacy of αPD-1 treatment using the B16F10 melanoma model, generating up to 20% cure rate as compared to 0% without AC-NPs. Mechanistic studies revealed that AC-NPs induced an expansion of CD8+ cytotoxic T cells and increased both CD4+/Treg and CD8+/Treg ratios. Our work presents a novel strategy for improving cancer immunotherapy with nanotechnology

    Prognostic role of Wnt and Fzd gene families in acute myeloid leukaemia

    Get PDF
    Wnt-Fzd signalling pathway plays a critical role in acute myeloid leukaemia (AML) progression and oncogenicity. There is no study to investigate the prognostic value of Wnt and Fzd gene families in AML. Our study screened 84 AML patients receiving chemotherapy only and 71 also undergoing allogeneic haematopoietic stem cell transplantation (allo-HSCT) from the Cancer Genome Atlas (TCGA) database. We found that some Wnt and Fzd genes had significant positive correlations. The expression levels of Fzd gene family were independent of survival in AML patients. In the chemotherapy group, AML patients with high Wnt2B or Wnt11 expression had significantly shorter event-free survival (EFS) and overall survival (OS); high Wnt10A expressers had significantly longer OS than the low expressers (all P < .05), whereas, in the allo-HSCT group, the expression levels of Wnt gene family were independent of survival. We further found that high expression of Wnt10A and Wnt11 had independent prognostic value, and the patients with high Wnt10A and low Wnt11 expression had the longest EFS and OS in the chemotherapy group. Pathway enrichment analysis showed that genes related to Wnt10A, Wnt11 and Wnt 2B were mainly enriched in 'cell morphogenesis involved in differentiation', 'haematopoietic cell lineage', 'platelet activation, signalling and aggregation' and 'mitochondrial RNA metabolic process' signalling pathways. Our results indicate that high Wnt2B and Wnt11 expression predict poor prognosis, and high Wnt10A expression predicts favourable prognosis in AML, but their prognostic effects could be neutralized by allo-HSCT. Combined Wnt10A and Wnt11 may be a novel prognostic marker in AML
    corecore